Расчёт По Закону Наследования В Генетике

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: «голубоглазый мальчик с нормальным зрением» с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a — от матери, и гена d — от отца. Следовательно, отец и мать гетерозиготны.

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Основные генетические понятия

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.

Аутосомы — хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) — хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Законы Менделя: первый, второй и третий закон Менделя

Законы Менделя основаны на экспериментальных результатах гибридизации растений. Первый ботаник-гибридизатор был в 17 веке, Карл фон Линне, которому мы обязаны систематикой видов растений. Многочисленные ботаники в конце 18 — первой половине 19 века провели гибридизацию с двумя целями: либо показать, что только вид стабилен, гибриды нестабильны не могут долго сохраняться, либо с целью улучшения культурных растений. Первые были учеными-креационистами и фиксистами, вторые — агрономы. Они считали, что они сделали гибриды между разными сортами одного вида, а не межвидовые гибриды. Во всяком случае, мы задолго до работ Менделя знали принцип единообразия гибридов первого поколения, который часто ошибочно считают первым из законов Менделя.

Вам может понравиться =>  Льготы многодетным на проезд в электричках в 2022

Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.

Сцепленное наследование

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

Генетики в течение десятилетий изучали рост во взрослом возрасте как модель распределения между генетическими и средовыми влияниями на количественный признак. Собрано множество измерений (например, при призыве в армию). График частоты различного роста в популяции демонстрирует колоколообразную кривую, соответствующую нормальному распределению. При использовании близнецового метода в выборках Северной Европы рассчитан h2 для роста.

Понятие наследуемости (обозначаемое h2) введено для определения роли генетических различий в изменчивости количественных признаков. Наследуемость — доля общей фенотипической изменчивости количественного признака, вызванная генами, и, следовательно, мера влияния различных аллелей в разных локусах на изменчивость данного количественного признака, наблюдаемую в популяции.

Моногибридное скрещивание
Моногибридным называется скрещивание, при котором просле-живается наследование одного признака.
Первый закон Менделя — закон единообразия гибридов первого поколения: при скрещивании гомозиготных особей, отличающихся альтернативным проявлением одного признака, все потомство будет единообразным по фенотипу и генотипу. Полученные особи называются гибридами.
Второй закон Менделя — закон расщепления: при скрещивании гибридов первого поколения между собой в потомстве происходит рас-щепление признака по фенотипу 3 :1, а по генотипу 1:2:1.
Эти соотношения при расщеплении можно получить при следу-ющих условиях:
— число потомков должно быть большим, так как это статистиче-ская закономерность;
— между аллелями имеется полное доминирование.
При неполном доминировании расщепление по генотипу и фенотипу совпадает 1:2:1.
Изучая моногибридное скрещивание, Г. Мендель разработал разные типы скрещивания, в том числе и анализирующее.
Анализирующее скрещивание используют для выяснения генотипа исследуемого организма: организм с доминантным признаком скрещивают с рецессивной гомозиготой и анализируют потомство. При этом возможны два варианта:
— все потомство единообразно — организм с доминантным при-знаком гомозиготен;
— потомки различаются фенотипически — организм с доми-нантным признаком гетерозиготен.

Дигибридиое скрещивание
Дигибридное скрещивание — это скрещивание, при котором ана-лизируется наследование двух признаков одновременно. Мендель показал, что закон единообразия гибридов первого поколения справедлив для любого количества признаков, в том числе и для дигибридного скрещивания.
Третий закон Менделя — закон независимого наследования и независимого комбинирования признаков: при ди- и полиги- бридных скрещиваниях каждый признак наследуется независимо от другого, расщепляясь в соотношении 3:1. При дигибридном скрещивании в F2 формируются четыре фенотипа в соотношении 9:3 :3 :1, при этом два из них — рекомбинантные. Закон соблюдается, если неаллельные гены находятся в разных парах гомологичных хромосом и отсутствует взаимодействие между ними.
Цитологические основы законов Менделя базируются на процессах гаметогенеза и оплодотворения.
Законы Менделя выполняются при определенных условиях.
Условия менделирования признаков:
• моногенное наследование;
• полное доминирование;
• равновероятное образование всех гамет;
• равновероятная встреча всех гамет при оплодотворении;
• равновероятная выживаемость всех зигот;
• отсутствие летальных мутаций;
• отсутствие взаимодействий между неаллельными генами (при полигибридном скрещивании);
• полная пенетрантность гена;
• выраженная стойкая экспрессивность гена.

Вам может понравиться =>  Если Менять Фамилию Надо Ли Менять В Свидетельстве О Рождении У Ребенка

БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА

Один из подходов к решению этой задачи – рассмотреть положение сайтов рестрикции Sal и Hind относительно друг друга. Sal даёт два фрагмента одинаковой длины (5 тыс. п.н.), после обработки Sal+Hind получаются фрагменты 4; 3; 2 и 1. Далее с помощью элементарной арифметики можно определить, что один из фрагментов Sal разрезается Hind на фрагменты 4 и 1 (4 + 1 = 5), а другой – на фрагменты 3 и 2 (3 + 2= 5).

У собак часто встречается рецессивная глухота, не сцепленная с полом. Признак определяется одним геном. Вы завели пару собак с нормальным слухом, при этом, несмотря на то что все их родители имели нормальный слух, и у самца, и у самки были сибсы (братья и сёстры) с глухотой. Какова вероятность рождения глухого щенка у этой пары?

Расчёт По Закону Наследования В Генетике

Проявляющийся у гибридов признак Мендель назвал доминантным, а подавляемый — рецессивным. Данные термины используются до настоящего времени, равно, как и символика, введенная Менделем. Рецессивные признаки принято обозначать строчными буквами (в алфавитном порядке, латинскими буквами, например а; в; с; и т.д., где а – один признак, в – второй), а доминантные – заглавными, например, А; В и т.д. Родителей обозначают латинской буквой P, а поколения F1; 2 и т.д., где цифра обозначает порядковый номер поколения.

Генетика – это наука о закономерностях реализации живыми организмами наследственности и изменчивости. Это достаточно молодая наука – датой ее рождения считается 1900 год, в котором три ученых Г. Де Фриз, К. Корренс и Э. Чермак в трех разных странах и независимо друг от друга «заново открыли» законы наследования признаков, которые монах Грегор Мендель еще в 1865 году.

Ученик всегда должен помнить, что у человека, например, в ядре соматической клетки 44 аутосомы. В них расположено огромное количество генов. Как определить, что в задаче наследуются именно такие гены? Во-первых, в таких задачах вовсе не заостряется внимание на половой принадлежности не только родителей, но и тем более детей. Во-вторых, проявление признака характерно для многих особей. Не только для особей определенного пола.

Проблема решения многих задач в том, что ученик не понимает типов наследования, заложенных в задаче. Отнюдь не всегда в задачах открыто пишут о типах наследования. Очень часто составители хотят, чтобы ученик определил их самостоятельно. Подобные знания они хотят оценить.

При скрещивании дигибридов между собой в случае, если неполное доминирование наблюдается лишь в одной паре генов, в потомстве появится 6 различных фенотипов в отношении 3:6:3:1:2:1, вместо ожидаемого 9:3:3:1. Если е обе пары генов наследуются как промежуточный признак, то будет наблюдаться образование 9 различных фенотипов в отношении 1:2:1:2:4:2:1:2:1.

Задача 7. Синдактилия (сращение пальцев) обусловлена доминантным геном, нарушающим разделение пальцев во время эмбриогенеза. Женщина, имеющая этот дефект, вступала в брак дважды. У обоих мужей пальцы были нормальными. От первого брака родилось двое детей, один из которых имел сросшиеся пальцы, от второго брака родилось трое детей, двое из которых имели сросшиеся пальцы. Каков генотип женщины и ее мужей?

Решение задач по генетике с использованием законов ля

В условии расчетной задачи должны содержаться сведения:
– о характере наследования признака (доминантный или рецессивный, аутосомный или сцепленный с полом и др.);
– прямо или косвенно (через фенотип) должны быть указаны генотипы родительского поколения.
Вопрос расчетной задачи касается прогноза генетической и фенотипической характеристик потомства. Приведем пример задачи расчетного типа.

Вам может понравиться =>  Рефераты По Предмету Актуальные Проблемы Семейного Права

Упражнение 7. В медицине имеет большое значение различие между четырьмя группами человеческой крови. Группа крови является наследственным признаком, зависящим от одного гена. Ген этот имеет не две, а три аллели, обозначаемые символами А, В, . Лица с генотипом 00 имеют первую группу крови, с генотипами АА или А0 – вторую, BB или В0 – третью, АВ – четвертую (мы можем сказать, что аллели А и В доминируют над аллелью , тогда как друг друга они не подавляют). Какие группы крови возможны у детей, если у их матери – вторая группа крови, а у отца – первая?

Объясняется это тем, что при мейотическом делении получаются гаплоидные гаметы, каждая из которых обладает половинным набором хромосом, ведь в его ходе гомологичные хромосомы попадают в разные половые клетки. Получается, что гетерозиготная (имеющая в генотипе оба признака) особь дает своим потомкам либо один ген, либо другой, а они, в комбинации с генами второго родителя, приводят к фенотипическому расхождению признаков.

Гетерозиготность полученных ранее гибридов первого поколения, то есть наличие в их генотипе обоих вариантов аллеля — и доминантного, и рецессивного, обуславливает, при дальнейшем их размножении, проявление всех унаследованных возможных комбинаций 2 генов, которых математически может быть 4 и получению потомства, имеющего:

Как наследуются генетические нарушения

Представьте себе две гомологичные хромосомы. Одна из них — материнская, другая — отцовская. Копии генов, расположенные на одних и тех же участках ДНК таких хромосом называют аллельными или просто аллелями (греч. alios — другой). Эти копии могут быть одинаковыми, то есть полностью идентичными. Тогда говорят, что содержащая их клетка или организм являются гомозиготными по данной паре аллелей (греч. homos — равный, одинаковый и zygote — соединенная в пару). Иногда для краткости такую клетку или организм называют просто гомозиготой. Если аллельные гены несколько различаются между собой, то содержащие их клетки или организмы называются гетерозиготными (греч. heteros — другой).

Понять такую ситуацию очень легко. Представьте, что ваши папа и мама независимо друг от друга напечатали с помощью пишущей машинки одну и ту же короткую заметку, и вы держите в руках оба листочка с получившимися текстами. Тексты — это аллельные гены. Если родители печатали аккуратно и без ошибок, оба варианта будут полностью совпадать вплоть до последнего знака. Значит, вы — гомозигота по данным текстам. Если же тексты различаются благодаря опечаткам и неточностям, их владельца следует считать гетерозиготной. Все просто.

Иногда встречаются черепаховые самцы, которые имеют генотип ХХY, они стерильны. У человека также возможна инактивация одной из Х-хромосом, что приводит к определенному мозаицизму признаков. Например, существует болезнь, связанная с отсутствием потовых желез, у мужчин потовые железы могут полностью отсутствовать, а у женщин могут располагаться мозаично на теле. Мозаичность может проявлятся у женщин при дальтонизме. Женщина может быть дальтоником на один глаз, либо дальтонизм проявляется на уровне сетчатки. Полностью сцепленное с полом наследование у бабочек и птиц имеет свои особенности, т.к. у них гомогаметный пол – мужской, а гетерогаметный – женский.

на ранних этапах развития зародыш бисексуален. Есть гены для развития как женских, так и мужских половых признаков. Решающее значение в этом случае имеет баланс или соотношение этих генов. У женского пола в Х-хромосоме есть гены, определяющие развитие женских половых признаков. В Y -хромосоме есть гены SRY и SPY . Существуют женщины генотипом Х Y , у которых данные гены не работают.

Adblock
detector