Законы Ома 2

При изучении природы электричества путем научных исследований происходит формулировка тех или иных законов. Они отличаются межу собой не только своим содержанием, но и тем, как были выведены. Некоторые законы представляют собой следствие из более общих утверждений, другие являются удачной попыткой объяснить многократно наблюдаемые факты.

Батарея аккумулятора обеспечивает перемещение электронов от положительной клеммы к отрицательной. Через электрическую цепь они постоянно движутся в противоположном направлении. Уменьшение их количества на отрицательной клемме и избыток на положительной постоянно компенсируются процессами, происходящими внутри устройства.

В веществе движение электронов не является свободным. Перемещаясь, частицы должны преодолевать сопротивление, расходуя на это свою энергию. Величина сопротивления зависит от конкретного материала. В проводниках электроны двигаются относительно легко. Через изоляторы ток пройти не может, за исключением тех случаев, когда подаётся настолько высокое напряжение, что такая ситуация создает пробой.

В электрической цепи используются резисторы в тех случаях, когда для работы прибора требуется строго определённое сопротивление. Если клеммы источника тока, говоря простыми словами, соединить напрямую, то сопротивление будет малым, а ток относительно большим. С одной стороны, большой ток в некоторых случаях способен расплавить провод, с другой он приводит к ускоренной разрядке батареи.

Как известно, в цепи переменного тока действует как активное, так и реактивное сопротивление. Первое из них совпадает с тем, как понимали эту величину во времена Георга Ома. Однако индуктивное и емкостное сопротивления также тормозят движение электронов. В этом случае применяется закон Ома для переменного тока.

Закон Ома для «чайников»: понятие, формула, объяснение

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

В электротехнике ток течет от плюса до минуса (смотрите рисунок 1). Другими словами, как только возникает замкнутая цепь, ток начинает течь от положительного полюса к отрицательному полюсу источника напряжения. Мы говорим о замкнутой цепи, когда два полюса источника напряжения соединены друг с другом сопротивлением.

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Закон Ома и его применение

В полупроводниках происходят более сложные процессы, поскольку они отличаются жесткой кристаллической структурой. При наличии примесей определённого типа может возникать электронная или дырочная проводимость. Ток может представлять собой движение, как электронов, так и дырок.

Батарея аккумулятора обеспечивает перемещение электронов от положительной клеммы к отрицательной. Через электрическую цепь они постоянно движутся в противоположном направлении. Уменьшение их количества на отрицательной клемме и избыток на положительной постоянно компенсируются процессами, происходящими внутри устройства.

При изучении природы электричества путем научных исследований происходит формулировка тех или иных законов. Они отличаются межу собой не только своим содержанием, но и тем, как были выведены. Некоторые законы представляют собой следствие из более общих утверждений, другие являются удачной попыткой объяснить многократно наблюдаемые факты.

  • a — величина, характеризующая источник тока. Сейчас говорят, что это электродвижущая сила источника тока;
  • b представляет собой свойство электрической установки, которое теперь рассматривается в качестве внутреннего сопротивления источника тока;
  • l — величина, зависящая от длины используемых проводов (в современных терминах она соответствует сопротивлению электрической цепи).

Закон Ома для однородного участка фактически является попыткой создать правило, которое соответствует большому количеству наблюдений и экспериментов. Его формулировка на протяжении веков подтверждалась на практике, приобретая силу фундаментального закона физики. Закон Ома, представленный в интегральной форме, даёт возможность производить расчёты для различных электрических цепей.

Закон Ома для участка цепи

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны. Потери и падение напряжения — в чем различие?

Приборы, у которых вольт-амперная характеристика является прямой линией, проходящей через начало координат, т. е. сопротивление остается постоянным при изменении напряжения или тока, называются линейными приборами . Применяют также термины линейные цепи, линейные сопротивления.

Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы — сторонними силами.

В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.

Коэффициент r называется сопротивлением, а g — проводимостью. Оба коэффициента определяются геометрическими размерами и физическими свойствами среды, по которой протекает электрический ток. В простейшем случае протекания тока по проводнику с постоянным сечением r= r l/s , где r , l и s — соответственно удельное электрическое сопротивление проводника, его длина и площадь поперечного сечения.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Вам может понравиться =>  Телевизионная Антена Не Работает Московский Район

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок. Пограничная область раздела полупроводников с разными типами проводимости называется запирающим слоем. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение ​ \( U_З \) ​, приблизительно равное 0,35 В для германиевых n-p-переходов и 0,6 В для кремниевых.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Коронный разряд возникает при нормальном и повышенном давлении у заостренных электродов. У острия электрода напряженность электрического поля велика, и в этой области возникает ударная ионизация при атмосферном давлении. Коронный разряд может возникнуть в тонких проводах, находящихся под высоким напряжением. Это приводит к утечке электроэнергии. Применяется в электрофильтрах, громоотводах, счетчике Гейгера–Мюллера.

В состоянии плазмы находится подавляющая часть вещества Вселенной: звезды, галактические туманности и межзвездная среда. Около Земли плазма существует в виде солнечного ветра и ионосферы. Плазму можно наблюдать в рекламных газовых трубках, кварцевых лампах. За последние годы применение плазмы существенно расширилось. Высокотемпературная плазма (Т ∼ 10 6 –10 8 К) из смеси дейтерия с тритием используется для осуществления управляемого термоядерного синтеза; низкотемпературная плазма (Т ≤ 10 5 К) – в различных газоразрядных приборах: газовых лазерах, ионных приборах.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места – дырки. На эти места могут переходить электроны из соседних ковалентных связей, что приводит к движению дырок по кристаллу.

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.

Для большинства схем амперы – слишком большие величины, а омы – слишком маленькие. Поэтому в формулу можно подставлять миллиамперы и килоомы. Если силу тока подставлять в миллиамперах (мА), то сопротивление обязательно должно быть в килоомах (кОм) и наоборот. Напряжение – всегда в вольтах.

Закон Ома назван в честь своего открывателя это ученый Георг Симон Ом. Свои эксперименты в области электричества он начал вдохновляясь опытами Фурье. Ом проводил свои опыты с различными материалами и изучение их электропроводности. Так была разработана знаменитая формула, которая стала краеугольной в современной физике, которая вошла в школьные учебники: I=U/R. Сила тока пропорциональна величине напряжения и имеет обратную пропорциональность сопротивлению.

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:

Можно попробовать представить напряжение по-другому. Есть все те же электроны, которые скопились на одном краю источника питания. На втором краю их мало. Так как каждый из электронов имеет какой-то заряд, там, где их много, суммарный заряд больше, где мало — меньше. Разница между зарядами и есть напряжение. Это тоже несложно представить. С точки зрения электричества — это более корректное представление, хоть и не точное.

Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.

Участок цепи имеет какое-то сопротивление. Это понятно. Но источник питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Электротехника-основы теории

Причем, все расчеты производятся с действующими значениями тока и напряжения. Действующее значение силы переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока. Действующее значение Jперем.= 0,707*Jпост. Действующее значение Uперем.= 0,707*Uпост. Например в нашей домашней сети действующее значение переменного напряжения — 220 вольт, а максимальное (амплитудное) его значение = 220*(1 / 0,707) = 310 вольт.

Закрываем пальцем неизвестную величину, требующую определения. Положение величин оставшихся не закрытыми, подскажет нам, что делать. Как вы сами видите, здесь как раз, возможны три варианта.
1.Чтобы найти силу тока делим величину напряжения на величину сопротивления — вертикальная линия внутри, символизирует деление.
2. Для нахождения сопротивления необходимо разделить величину напряжения на величину тока.
3. Неизвестную величину значения напряжения, получаем умножая величину силы тока на величину сопротивления.

Вам может понравиться =>  Ветеран Труда Рязанской Области В 2022 Году

Замечательный немецкий физик Георг Симон Ом, чье имя носит знаменитый закон электротехники и единица электрического сопротивления, родился 16марта 1789 г. в Эрлангене (федеральная земля Бавария). Его отец был известным в городе мастером-механиком. Мальчик Ом помогал отцу в мастерской и многому у него научился.

Наконец, через 20 лет ожидания, Георг Ом получил признание и на родине. В 1845 его избрали в Баварскую Академию Наук, а через четыре года пригласили в Мюнхен на должность экстраординарного профессора. Тогда же по королевскому указу он назначается хранителем государственного собрания физико-математических приборов и референтом по телеграфному ведомству при физико-техническом отделе Министерства государственной торговли. Одновременно он продолжает читать лекции по физике и по математике. Вся жизнь Георга Ома была отдана науке и поэтому семьи он не создал.

Ом в 1911 все же вернулся в Эрланген, то уже в том же году сумел закончить университет, защитить диссертацию и получить ученую степень доктора философии. Более того, ему тут же была предложена в университете должность приват-доцента кафедры математики. Это было прекрасно, но всего через три семестра Георг Ом вынужден был по материальным соображениям искать другое место. Эти поиски были мучительными и долгое время безуспешными. Наконец пришло приглашение занять место учителя физики и математики в иезуитской коллегии Кельна. 37-летний Ом немедленно направился в Кельн.

Закон Ома

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы будете поливать свои огурцы? Вы никогда не замечали, что башню возводят где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на его поверхности.

Допустим, у нас есть давление в трубе, но заслонка полностью закрыта. В данном случае поток воды стоит на месте и вода никуда не течет. Следовательно, сила потока в трубе равняется нулю. Но как только мы чуток приоткроем заслонку, у нас появится движуха воды, что в свою очередь вызовет поток воды. Нетрудно догадаться, что чем больше мы открываем заслонку, тем сильнее становится поток воды. При полностью открытой заслонке сила потока воды будет максимальной.

Закрутив обратно ручку краника, мы только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока 😉 Кто забыл, напомню — это количество электронов протекающих через поперечное сечение проводника за какой-то период времени. И что у нас стало с этой силой тока? Она уменьшилась!

Допустим, у вас сосед мажор. Катается на Ладе-Весте и ездит отдыхать в Крым). Заплатить 100 рублей в месяц за чистую воду для него все равно, что сходить в кабак с друзьями. Но пока он загорал в Крыму, его дети, которых он оставил теще, пробрались в гараж, нашли шуруповерт и набор свёрл. Ну и как это часто бывает, захотелось им вдруг что-то посверлить. Но тут вдруг пришла теща и с криком: » А ну съ… ли с папкиного гаража!» разогнала детей, которые все-таки успели прихватить с собой шуруповерт и свёрла. И вот им на глаза попалась одиноко стоящая башня… и все произошло, как по первому сценарию… Просверлили тонкое отверстие прямо у подножия водобашни.

При этом спираль лампы горит в половину накала, выясним причину этого явления. Для расчетов сопротивления общей нагрузки (R + r) применяют законы Ома для отдельных участков цепей и принципы пропорциональности:

А различные факторы, что создают преграды внутри проводников для потока заряженных частиц, препятствуя их движению, естественно будет сопротивлением. Кроме сопротивления общей внешней цепи существует и внутреннее сопротивление самого источника электропитания. Его также следует при необходимости учитывать в расчётах.

В промышленных генераторах r появляется не только из-за электрического сопротивления обмоток, но и за счет внешних причин. Так, к примеру, в гидроэлектростанциях значение величины зависит от КПД турбины, сопротивления тока воды в водоводе, а также от потерь в механической передаче. Кроме того, некоторое влияние оказывает температура воды и то, насколько она заилена.

U = U1 +U2 = IR1+ IR2 = I(R1+ R2)= I·R. Получаем: R= R1+R2

  • R — активное сопротивление (Омы)
  • i — мнимая единица (число, квадрат которого равен -1)
  • f — циклическая частота в герцах (в нашем случае частота сети)
  • C — величина ёмкости (фарады)
  • L — величина индуктивности (генри)

Закон Ома для участка цепи: формула

Итак, ток измеряется так амперметром, который последовательно подключается к потребителю (резистору, лампе накаливания и т. д.), Через который нужно определять ток. На принципиальной схеме он изображен как A внутри круга (см. рисунок 1). Амперметр имеет очень низкое внутреннее сопротивление, чтобы не влиять на ток, который должен протекать через потребителя. В идеале, внутреннее сопротивление амперметра принимается равным 0 Ом и поэтому просто опускается.

Например, вы «закрываете» напряжение U в вершине «треугольника Ома». Две оставшиеся величины, то есть сопротивление R и ток I, находятся рядом. Соответственно, чтобы получить напряжение U, нужно умножить сопротивление R на ток I. Это в точности соответствует формуле закона Ома для участка электрической цепи.

Если вы хотите определить недостающую величину, то прикройте эту величину мысленно или пальцем, а затем посмотрите на две другие величины. Если две «не закрытые» величины находятся рядом друг с другом, то они умножаются. С другой стороны, если они расположены друг над другом, то верхняя величина делится на нижнюю.

Три величины — напряжение, электрический ток и сопротивление — могут быть четко представлены в электрической цепи. В простейшем случае она состоит из источника постоянного напряжения и резистора. Резистор подключен к источнику напряжения, а для упрощения возьмем, что сопротивление проводов равно 0 Ом.

С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.

Обобщённый закон Ома

Ток в проводнике возникает в электрическом поле, которое, в свою очередь, появляется при наличии разности потенциалов или напряжения. Движение тока направлено в сторону меньшего потенциала. Условно считается, что в этом направлении двигаются положительные заряды, а в обратную сторону происходит движение свободных электронов.

Закон Ома для участка цепи – полученный экспериментальным (эмпирическим) путём закон, который устанавливает связь силы тока на участке цепи с напряжением на концах этого участка и его сопротивлением. Строгая формулировка закона Ома для участка цепи записывается так: сила тока в цепи прямо пропорциональна напряжению на её участке и обратно пропорциональна сопротивлению этого участка.

Следует сразу же выяснить, что такое электродвижущая сила. По сути, она является физической величиной, характеризующей действие внешних сил источника ЭДС. Например, в простой батарейке перемещение зарядов происходит в результате химической реакции. То есть, данная сила двигает заряд, обеспечивая общее течение электрического тока.

При подключении проводника к аккумулятору, последний через некоторое время будет разряжен. То есть, движение электронов постепенно замедляется и, в конце концов, прекратится совсем. Этому способствует молекулярная решетка проводника, оказывающая противодействие, столкновения электронов между собой и другие факторы. Для преодоления такого сопротивления следует дополнительно приложить определенные сторонние силы.

Но, как показывают графики, все проводники обладают разными коэффициентами пропорциональности. Следовательно, у них разная степень проводимости, получившая название электрического сопротивления (R). Поэтому, чем ниже будет сопротивление проводника, тем выше сила тока, проходящего через него. При том, что напряжение для всех проводников будет одинаковым.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Вам может понравиться =>  Забирают Машину Как Объект Правонарушения

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Закон Ома для полной и не полной эллектрической цепи, формула и правильное определение

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR.
Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U =
— I*r.
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.
Если ток в цепи равен нулю, следовательно,
= U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

Фоpмула (2.7) выpажает закон Ома в локальной или диффеpенциальной фоpме (закон фоpмулиpуется для данной точки пpоводника, а не для его участка): плотность тока пpопоpциональна напpяженности электpического поля .
Очевидно, закон Ома выполняется не всегда. Из наших pассуждений нетpудно установить условия пpименимости закона Ома. Во-пеpвых, необходимо, чтобы выполнялась фоpмула (2.4), для вывода котоpой необходимо, чтобы сила Fсопр

Плотность тока есть сила тока, пpоходящего чеpез единицу площади пpоводника в данной точке сечения. Плотность тока является локальной хаpактеpистикой тока, отнесенной к данной точке пpоводника. Эта хаpактеpистика особенно важна в случае, когда ток по сечению пpоводника неодноpоден, т.е. когда плотность тока в pазных сечениях pазлична. Плотность тока pассматpивается как вектоp ( j ), напpавленный по линии движения заpядов в данной точке сечения пpоводника.
Если по сечению пpоводника ток pаспpеделен pавномеpно, то плотность тока (его модуль) можно опpеделить пpоще, а именно:

Пpежде всего следует опpеделить, что такое электpический ток. Как явление ток пpедставляет собой движение электpических заpядов по пpоводникам. Он хаpактеpизуется тем количеством электpического заpяда, котоpое пpоходит чеpез сечение пpоводника в единицу вpемени (в секунду)*. Мы будем pассматpивать лишь постоянный ток, постоянный как по величине, так и по напpавлению. Такой ток в пpоводниках называется постоянным во вpемени. Наpяду с силой тока J вводят более детальную его хаpактеpистику, а именно плотность тока . От чего зависит эта величина? Рассмотpим не все сечение пpоводника S, а лишь его малую часть dS. Если чеpез все сечение пpоходит ток J, то чеpез часть dS пpоходит ток dJ . Плотностью тока называется отношение силы тока dJ к dS:

v. Напpимеp, в электpонных лампах закон Стокса для силы сопpотивления, действующей на электpон, не выполняется и ускоpение электpонов в электрическом поле нельзя считать pавным нулю. Во-втоpых, необходимо, чтобы плотность носителей тока n не зависела от напpяженности поля. Напpимеp, в коpонном pазpяде пеpвое условие выполняется, но не выполняется втоpое. В этом pазpяде ток пеpеносится ионами, котоpые обpазуются в непосpедственной близости к остpию коpониpующего электpода и движутся затем чеpез весь пpомежуток. Их плотность в этом пpомежутке существенно зависит от напpяженности поля.
Выведем тепеpь закон Ома в интегpальной фоpме для участка цепи, не содеpжащего источника тока. Допустим, что участок цепи неодноpоден по длине, т.е. состоит из пpоводников pазного матеpиала, с изменяющимся по длине сечением (pис. 2.2 иллюстpиpует такую неодноpодность). Постоянный ток создается постоянным во вpемени полем (иначе бы ток не был постоянным). Но постоянное поле совеpшенно идентично электpостатическому полю. Это означает, что поле постоянных токов, как и электpостатическое поле, допускает введение потенциала. Поэтому каждое сечение цепи можно хаpактеpизовать потенциалом. Будем исходить из закона Ома в локальной фоpме:

Сила тока в цепи пpямо пpопоpциональна напpяжению (pазность потенциалов на участке цепи пpи постоянном токе называется напpяжением) и обpатно пpопоpциональна сопpотивлению участка.
Условимся участок цепи обозначать его началом и концом по напpавлению тока: 1 — >2 (12).
Рассмотpим фоpмулу сопpотивления участка цепи

Закон Ома не является универсальной связью между током и напряжением. Для металлов (в несверхпроводящем состоянии) закон Ома имеет место вплоть до весьма больших плотностей тока. Для полупроводников и газов пропорциональность между током и напряжением наблюдается лишь при малых напряжениях.

Допустим, она скрыта неразъемными деталями корпуса. В оставшейся схеме имеется источник ЭДС и элементы с известным сопротивлением. Тогда, замерив напряжение на входе неизвестной части схемы, можно вычислить ток, а после этого – и сопротивление неизвестного элемента.

Повышенный ток, в свою очередь, приводит изоляцию обмоток в полную негодность, и наступает уже не межвитковое, а самое настоящее, полноценное короткое замыкание. Ток идет помимо обмоток, сразу из фазного в нулевой провод. Правда, все сказанное может случиться только с совсем простым и дешевым вентилятором, не оборудованным тепловой защитой.

В нормальном, несверхпроводящем металлическом проводнике имеет место закон Ома. Для участка проводника, не содержащего источника электродвижущей силы (гальванического элемента, аккумулятора, генератора, термопары, источника фотоэдс и т. д.), закон Ома заключается в том, что сила тока пропорциональна разности потенциалов на концах участка. Коэффициент пропорциональности называют сопротивлением.

Выражение I=U/R , однако, записывают даже в случае, когда закон Ома не выполняется. Тогда оно служит определением сопротивления R = U/I . Если сопротивление не зависит от величины тока, закон Ома имеет место. Если сопротивление само меняется с изменением тока (как, например, сопротивление газа при газовом разряде), то никакой пропорциональности между напряжением и током нет, а значит, нет и закона Ома.

Электрический ток

Когда единичный положительный заряд перемещается по определенному участку цепи, то работу совершают кулоновские и сторонние силы. Запись работы электростатических сил равняется разности потенциалов ∆ φ 12 = φ 1 — φ 2 начальной и конечной точек неоднородного участка. Работу сторонних сил приравнивают к электродвижущей данного участка по закону Ома. Тогда полная работа запишется как:

При помещении изолированного проводника в электрическое поле E → на свободные заряды q в проводнике будет действовать сила F → = q E → . Это провоцирует возникновение кратковременных перемещений свободных зарядов. Процесс завершается, когда собственное поле электрических зарядов будет компенсировано внешним. Электростатическое поле внутри проводника станет равным нулю.

Их природа различна. Гальванические элементы или аккумуляторы обладают сторонними силами, возникающими по причине электрохимических процессов. В генераторах это обстоит по-другому: появление сторонних сил возможно при движении проводников в магнитном поле. Источник тока сравним с насосом, перекачивающим жидкость замкнутой гидравлической системы. Электрические заряды внутри источника под действием сторонних сил движутся против сил электростатического поля. Именно поэтому замкнутая цепь может обладать постоянным током.

Подключение к цепи производится параллельно. Каждый из приборов такого типа имеет внутреннее сопротивление R B . Чтобы перераспределение токов не было заметно, нужно проследить за тем, чтобы внутреннее сопротивление было больше, чем на участках подключаемой цепи. На рисунке 1 . 8 . 4 изображена такая цепь, тогда данное условие можно записать как R B ≫ R 1 .

Свинцовые аккумуляторы автомобилей имеют силу тока короткого замыкания в несколько сотен ампер. Особую опасность представляют замыкания в осветительных сетях, которые имеют подпитку от подстанций. Во избежание разрушительных действий предусмотрены предохранители или автоматы для защиты сетей.

Adblock
detector